Skip to main content
Research article - Peer-reviewed, 2022

Exploring the Design of Highly Energy Efficient Forestry Cranes using Gravity Compensation

Mendoza-Trejo, Omar; Rojas, Arturo D. Lopez; Morales, Daniel Ortiz; Lindroos, Ola; Cruz-Villar, Carlos A.; La Hera, Pedro

Abstract

Although most mechanized forestry work relies heavily on cranes for handling logs along the supply chain, there has been little research on how to improve cranes design. In addition, the available research has mainly focused on improving current designs, so there is a lack of application of modern methods for designing cranes with improved efficiency.This paper analyzes how a mechanical engineering design method, known as gravity compensation, can be used to make a new generation of highly energy efficient forestry cranes. To introduce this design approach, a standard forwarder crane with two booms is used as a model system on which to apply gravity compensation concepts. The design methodology follows a procedure based on physics and mathematical optimization, with the objective of minimizing the energy needed to move the crane by using gravity compensation via counterweights. To this end, we considered to minimize mechanical power, because this quantity relates to how fuel and hydraulic fluid are converted into mechanical motion.This analysis suggests that using gravity compensation could reduce energy consumption due to crane work by 27%, at the cost of increasing the crane total mass by 57%. Thus, the original crane mass of 559 kg increases to 879 kg after applying gravity compensation with counterweights. However, overall reductions in energy consumption would depend on both the crane work and the extraction distance. The greater the extraction distance, the lower the total savings. However, energy consumption savings of around 2% could be achieved even with an extraction distance of 1 km.From a design perspective, this study emphasized the need to consider gravity compensation in the design philosophy of forestry cranes, not only for its ability to minimize energy consumption, but also due to all the inherited properties it provides. This initial study concludes that designing cranes with a combination of gravity compensation concepts could yield a new generation of highly energy efficient cranes with energy savings exceeding those reported here.

Keywords

cranes design; forwarder crane; energy consumption; gravity compensation; counterweights

Published in

Croatian Journal Of Forest Engineering
2022, volume: 43, number: 2, pages: 257-270
Publisher: ZAGREB UNIV, FAC FORESTRY

Authors' information

Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology
Rojas, Arturo D. Lopez
CINVESTAV - Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional
Morales, Daniel Ortiz
Cranab AB
Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology
Cruz-Villar, Carlos A.
CINVESTAV - Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional
Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology

UKÄ Subject classification

Forest Science

Publication Identifiers

DOI: https://doi.org/10.5552/crojfe.2022.1303

URI (permanent link to this page)

https://res.slu.se/id/publ/120018