Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2009Vetenskapligt granskadÖppen tillgång

Studies on the mechanism of resistance to Bipolaris sorokiniana in the barley lesion mimic mutant bst1

Persson, Mattias; Falk, Anders; Dixelius, Christina


P>The Bipolaris sorokiniana tolerant 1 (bst1) barley mutant is derived from fast neutron-irradiated seeds of wild-type Bowman(Rph3). The induced mutation was genetically localized to a position on chromosome 5HL distal to the centromere using amplified fragment length polymorphism markers. In addition, the defence responses and related gene expression in the bst1 mutant after fungal challenge were compared with those occurring in wild-type plants. Hydrogen peroxide generation, determined by 3,3-diaminobenzidine staining, revealed a clearly reduced level of bst1, compared with the wild-type, during the entire experimental time: 8-120 h post-inoculation (hpi). At 48 hpi, the wild-type samples displayed twice as much fungal mass and three times greater H(2)O(2) production than bst1. At the same time, staining of B. sorokiniana showed less fungal growth in the spontaneous lesions of bst1 compared with the wild-type. Monitoring of defence-related genes at 48 hpi demonstrated strong expression of PR-1a, PR-2, PR-5 and PR-10 in bst1. A gene coding for a unique oxidoreductase enzyme, designated as HCP1, was expressed at much higher levels in inoculated leaves of the bst1 mutant than in those of the wild-type plant. Taken together, the results suggest that the defence to B. sorokiniana largely relies on salicylic acid-responsive pathogenesis-related (PR) genes, as well as selected reactive oxygen species and unknown HCP1-associated factors.

Publicerad i

Molecular Plant Pathology
2009, Volym: 10, nummer: 5, sidor: 587-598