Skip to main content
SLU publication database (SLUpub)

Research article2009Peer reviewed

Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training

Willing, B.; Voros, A.; Roos, S.; Jones, C.; Jansson, A.; Lindberg, J. E.

Abstract

Reasons for performing study: Diets rich in readily fermentable carbohydrates, fed traditionally to meet the increased energy requirements of the performance horse, are associated with a number of gastrointestinal disorders that involve disturbances in the intestinal microbiota, however, these changes are poorly understood.Objectives: With the long-term objective of improving intestinal health and to increase understanding of the relationship between diet and microbiota, the effect of feeding Standardbred horses a high-energy forage-only (F) diet was studied compared to a more traditional forage-concentrate (C) diet on faecal microbiota.Methods: Diets were fed in a cross-over design to 6 mature geldings on a scheduled training regime, both periods consisting of 29 days. DNA was extracted from faecal samples collected at 4 time points from each period, bacterial 16S rRNA genes were amplified and community composition assessed by terminal-restriction fragment length polymorphism, cloning and sequencing. Faecal pH and cultivable lactic acid bacteria (LAB) and enterobacteria were also assessed on the final collection day of each period.Results: Diet F resulted in a microbial composition that was more stable between sampling periods and had lower counts (P<0.05) of cultivable LAB and specifically members of the Streptococcus bovis/equinus complex. Motile and swarming Lactobacillus ruminis was present in all horses on diet C and not in horses on diet F. Diet C also resulted in the increase (P<0.05) in members of Clostridiaceae cluster III and a concomitant reduction (P<0.05) in an unknown group of Bacteroidales.Conclusions and potential relevance: The greater microbial stability and reduction in LAB and members of the Streptococcus bovis/equinus complex on diet F indicate an opportunity to develop feeding strategies that support equine health and welfare. Novel changes identified in the faecal microbiota that resulted from carbohydrate inclusion merit further investigation.

Keywords

horse; haylage; starch; oats; Streptococcus equinus; Lactobacillus ruminis; terminal restriction; fragment length; polymorphism

Published in

Equine Veterinary Journal
2009, Volume: 41, number: 9, pages: 908-914