Ortiz Rios, Rodomiro Octavio
- Institutionen för växtförädling, Sveriges lantbruksuniversitet
Översiktsartikel2018Vetenskapligt granskadÖppen tillgång
Garcia-Oliveira, Ana Luisa; Chander, Subhash; Ortiz, Rodomiro; Menkir, Abebe; Gedil, Melaku
Micronutrient deficiency, also known as "hidden hunger," is an increasingly serious global challenge to humankind. Among the mineral elements, Fe (Iron) and Zn (Zinc) have earned recognition as micronutrients of outstanding and diverse biological relevance, as well as of clinical importance to global public health. The inherently low Fe and Zn content and poor bioavailability in cereal grains seems to be at the root of these mineral nutrient deficiencies, especially in the developing world where cereal-based diets are the most important sources of calories. The emerging physiological and molecular understanding of the uptake of Fe and Zn and their translocation in cereal grains regrettably also indicates accumulation of other toxic metals, with chemically similar properties, together with these mineral elements. This review article emphasizes breeding to develop bioavailable Fe- and Zn-efficient cereal cultivars to overcome malnutrition while minimizing the risks of toxic metals. We attempt to critically examine the genetic diversity regarding these nutritionally important traits as well as the progress in terms of quantitative genetics. We sought to integrate findings from the rhizosphere with Fe and Zn accumulation in grain, and to discuss the promoters as well as the anti-nutritional factors affecting Fe and Zn bioavailability in humans while restricting the content of toxic metals.
biofortification; cereals; iron; zinc; micronutrient deficiency; toxic risks
Frontiers in Plant Science
2018, Volym: 9, artikelnummer: 937
Utgivare: FRONTIERS MEDIA SA
SDG2 Ingen hunger
Genetik och förädling
DOI: https://doi.org/10.3389/fpls.2018.00937
https://res.slu.se/id/publ/95975